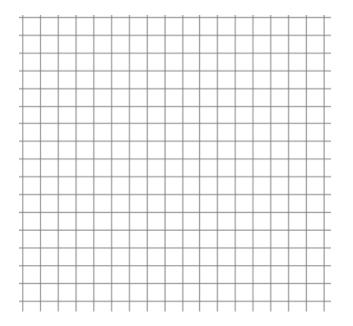
**Goal:** Graph absolute value functions.

**I. Review**: Graph the following functions on the same coordinate plane. Use the table for the first and the slope and intercept for the second.


a. 
$$f(x) = \frac{1}{2}x + 3$$

| х  | $f(x) = \frac{1}{2}x + 3$ |
|----|---------------------------|
| -2 |                           |
| 2  |                           |
| 4  |                           |

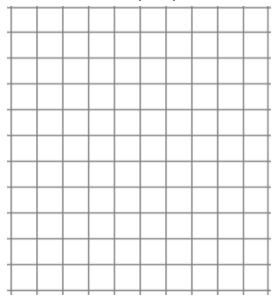
b. 
$$g(x) = 2x - 4$$

Slope: \_\_\_\_\_

*y*-intercept: \_\_\_\_\_



## **II. Absolute Value Functions: Tables**


c. Make a table of values to graph the absolute value function y = |x|.

| x  | y =  x |
|----|--------|
| -2 |        |
| -1 |        |
| 0  |        |
| 1  |        |
| 2  |        |

|   |  |  |  |  |  | ľ |
|---|--|--|--|--|--|---|
|   |  |  |  |  |  | ľ |
|   |  |  |  |  |  | ľ |
|   |  |  |  |  |  | ľ |
|   |  |  |  |  |  | ľ |
|   |  |  |  |  |  | ľ |
|   |  |  |  |  |  | ľ |
|   |  |  |  |  |  | ľ |
|   |  |  |  |  |  | ľ |
| - |  |  |  |  |  | ľ |

d. Make a table of values to graph the absolute value function y = |x-2| + 3.

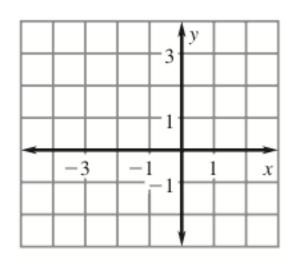
| x  | y =  x - 2  + 3 |
|----|-----------------|
| -1 |                 |
| 0  |                 |
| 1  |                 |
| 2  |                 |
| 3  |                 |



What observations do you make about the two functions and their graphs?

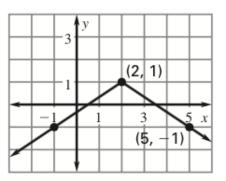
## **GRAPHING ABSOLUTE VALUE FUNCTIONS**

The graph of y = a|x - h| + k has the following characteristics.

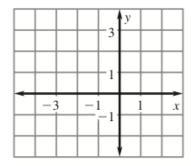

- The graph has vertex  $(\underline{\phantom{a}},\underline{\phantom{a}})$  and is symmetric in the line  $x=\underline{\phantom{a}}$ .
- The graph is V-shaped. It opens \_\_\_\_\_ if a>0 and opens \_\_\_\_\_ if a<0.
- The graph is \_\_\_\_\_ than the graph of y = |x| if |a| < 1.
- The graph is \_\_\_\_\_ than the graph of y = |x| if |a| > 1.

## 2-7 Absolute Value Functions

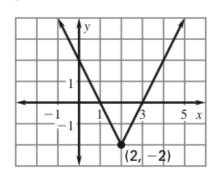
A#3


III. Graphing Using Properties

Graph 
$$y = 2|x + 1| - 2$$
.




## **IV. Writing Functions from Graphs**


Write an equation of the graph shown.



**1.** Graph  $y = \frac{2}{3}|x+1|-1$ . **2.** Write an equation of the



graph shown.



Tell whether the graph of the function opens up or down.

1. 
$$y = |x + 3| - 5$$

**2.** 
$$y = -4|x-1| + 6$$

**2.** 
$$y = -4|x-1| + 6$$
 **3.**  $y = \frac{2}{3}|x-2| + 9$ 

Identify the vertex of the graph of the given function.

**4.** 
$$y = 2|x + 13| - 6$$

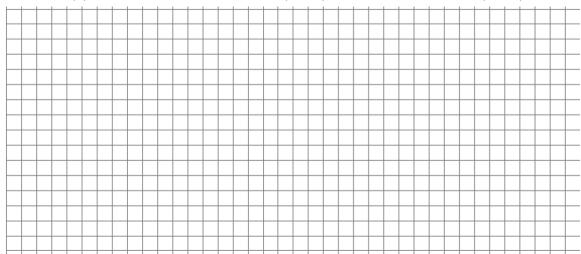
**5.** 
$$y = -3|x - 4| - 7$$

**6.** 
$$y = \frac{1}{5}|x+2| + 11$$

Tell whether the graph is wider, narrower, or the same width as the graph of y = |x|.

7. 
$$y = \frac{3}{5}|x - 3| + 7$$

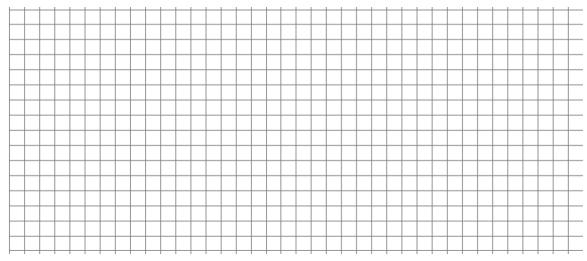
**8.** 
$$y = -8|x + 9| - 12$$


**8.** 
$$y = -8|x+9|-12$$
 **9.**  $y = -\frac{5}{2}|x-1|-3$ 

Graph the function.

**10.** 
$$y = |x| - 4$$

**11.** 
$$y = |x - 4|$$


**12.** 
$$y = |x + 2| - 3$$



**16.** 
$$y = |x - 4| + 5$$

**17.** 
$$y = 3|x - 1| - 2$$

**18.** 
$$y = -2|x + 7| - 4$$

